Proton & Neutron Polarizabilities with Compton Scattering from Low-Mass Nuclear Targets at the High Intensity Gamma-ray Source (HIGS)

Kent Leung (Nuclear Photonics 2025, Darmstadt, Germany)

Assist, Prof., Physics & Astronomy Dept., Montclair, New Jersey

Proton & Neutron Polarizabilities with Compton Scattering from Low-Mass Nuclear Targets at the High Intensity Gamma-ray Source (HIGS)

Kent Leung (Nuclear Photonics 2025, Darmstadt, Germany)

Compton @ HIGS

Nuclear Compton Scattering @ the High-Intensity Gamma-ray Source

Duke University: J. Zhou, E. Mancil, F. Friesen, H. Gao, D. Godagama, C.

R. Howell, S. Jia, S. Mikhailov, Y. K. Wu, B. Yu, C. Martin

North Carolina Central University: M. Ahmed, B. Crowe, D. Markoff

George Washington University: E. Downie, G. Feldman, M. Lewis,

Mount Allison University: D. Hornidge

University North Carolina at Chapel Hill: H. Karwowski

University of Kentucky: M. Kovash

Montclair State University: K. Leung, S. Estupinan Jimenez

University of Saskatchewan: R. Pywell

This research is supported by the U.S. DOE under Contracts DE-FG02- 03ER41231, DE-SC0016581, DE-SC0005367, DE-FG02-97ER41033, DE-SC0016656, and National Science Foundation 2232117.

Low-energy QCD with nucleon polarizabilities

• QCD Asymptotic Freedom. Gross, Wilczek & Politzer. Physics Nobel 2004. Non-perturbative.

Low-energy QCD with nucleon polarizabilities

• QCD Asymptotic Freedom. Gross, Wilczek & Politzer. Physics Nobel 2004. Non-perturbative.

Low-energy QCD with nucleon polarizabilities

• QCD Asymptotic Freedom. Gross, Wilczek & Politzer. Physics Nobel 2004. Non-perturbative.

Nucleon polarizabilities

- Fundamental properties probing nucleon structure
- Induced dipole moments from static fields:

$$\vec{d}_{ind} = \alpha_{E1} \vec{E}$$
, $\vec{m}_{ind} = \beta_{M1} \vec{H}$ scalar electromagnetic polarizabilities

Why scalar polarizabilities?

- Low-energy QCD: Bridge between emerging lattice QCD calculations & χΕΓΤ
- Input to Lamb shift in muonic hydrogen for proton radius puzzle
- Electromagnetic contribution to charge symmetry breaking: uncertainty dominated by α_{E1}^{p-n} , β_{M1}^{p-n}

 e.g., the β_M (magnetic polarizability) of a nucleon is an interplay between diamagnetic charged pion currents and paramagnetic Δ resonance

Current knowledge of scalar polarizabilities

Scalar Dipole Polarisabilities: "canonical units" $[10^{-4} \text{ fm}^3]$

$$\alpha_{E1} [10^{-4} \text{ fm}^3]$$
 $\beta_{M1} [10^{-4} \text{ fm}^3]$
 $10.65 \pm 0.35_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.3_{\text{theory}}$
 $3.15 \mp 0.35_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.3_{\text{theory}}$

$$\beta_{M1} [10^{-4} \text{ fm}^3]$$

$$3.15 \mp 0.35_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.3_{\text{theory}}$$

$$11.55 \pm 1.25_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.8_{\text{theory}}$$
 $3.65 \mp 1.25_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.8_{\text{theory}}$

$$3.65 \mp 1.25_{stat} \pm 0.2_{\Sigma} \mp 0.8_{theor}$$

proton (Baldin, N²LO) McGovern/Phillips/hg EPJA 2013 neutron (Baldin, NLO) COMPTON@MAX-lab PRL 2014

Current knowledge of scalar polarizabilities

Wang et al. PRL (2024). Lattice QCD with physical π *-mass:*

$$\alpha_{\rm p} = 10.0 \pm 1.3 \& 9.3 \pm 2.2$$

$$\alpha_{\rm n} = 9.7 \pm 1.4 \& 10.1 \pm 2.4$$

Scalar Dipole Polarisabilities: "canonical units" $[10^{-4} \text{ fm}^3]$

$$\alpha_{E1} \, [10^{-4} \, \text{fm}^3]$$

$$\beta_{M1} [10^{-4} \text{ fm}^3]$$

$$10.65 \pm 0.35_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.3_{\Xi}$$

$$10.65 \pm 0.35_{stat} \pm 0.2_{\Sigma} \pm 0.3_{theory} \quad 3.15 \mp 0.35_{stat} \pm 0.2_{\Sigma} \mp 0.3_{theory}$$

$$.55 \pm 1.25_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.8_{\text{theory}}$$

$$11.55 \pm 1.25_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.8_{\text{theory}}$$
 $3.65 \mp 1.25_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.8_{\text{theory}}$

proton (Baldin, N²LO) McGovern/Phillips/hg EPJA 2013 neutron (Baldin, NLO) COMPTON@MAX-lab PRL 2014

Current knowledge of scalar polarizabilities

Wang et al. PRL (2024). Lattice QCD with physical π *-mass:*

$$\alpha_p = 10.0 \pm 1.3 \& 9.3 \pm 2.2$$

$$\alpha_{\rm n} = 9.7 \pm 1.4 \& 10.1 \pm 2.4$$

Scalar Dipole Polarisabilities: "canonical units" $[10^{-4} \text{ fm}^3]$

$$\alpha_{E1} [10^{-4} \text{ fm}^3]$$
 $\beta_{M1} [10^{-4} \text{ fm}^3]$
 $10.65 \pm 0.35_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.3_{\text{theory}}$
 $3.15 \mp 0.35_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.3_{\text{theory}}$
 $11.55 \pm 1.25_{\text{stat}} \pm 0.2_{\Sigma} \pm 0.8_{\text{theory}}$
 $3.65 \mp 1.25_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.8_{\text{theory}}$

$$\beta_{M1} [10^{-4} \text{ fm}^3]$$

 $\pm 0.3_{\text{theory}} \quad 3.15 \mp 0.35_{\text{stat}} \pm 0.2_{\Sigma} \mp 0.3_{\text{theory}}$

Better experimental data needed already to improve comparison!

proton (Baldin, N²LO) McGovern/Phillips/hg EPJA 2013 neutron (Baldin, NLO) COMPTON@MAX-lab PRL 2014

Technique: measure absolute differential cross-sections

Nuclear Compton scattering:

 $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Powell} - \frac{e^2}{4\pi M_N} \left(\frac{\omega'}{\omega}\right)^2 \omega \omega' \left\{\frac{\alpha + \beta}{2} (1 + \cos\theta)^2 + \frac{\alpha - \beta}{2} (1 - \cos\theta)^2\right\} + O(\omega^4)$

Cross-section of point-like particle with anomalous magnetic moment

Outgoing & incoming energy Forward angles sensitive to $\alpha + \beta$ (cross-check with Baldin sum rule)

Scattering angle

Backward angles sensitive to α - β (what we extract)

Baldin Sum Rule:

$$\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_{\omega_{M1}}^{\infty} \frac{\sigma_{Tot}(\omega')}{\omega'^2} d\omega' \quad \text{Total photo-nuclear cross-section (from other experimental data)}$$

Technique: measure absolute differential cross-sections

Nuclear Compton scattering:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Powell} - \frac{e^2}{4\pi M_N} \left(\frac{\omega'}{\omega}\right)^2 \omega \omega' \left\{\frac{\alpha + \beta}{2} (1 + \cos\theta)^2 + \frac{\alpha - \beta}{2} (1 - \cos\theta)^2\right\} + O(\omega^4)$$

Cross-section of point-like particle with anomalous magnetic moment

Outgoing & incoming energy

Forward angles sensitive to $\alpha + \beta$ (cross-check with Baldin sum rule)

Scattering angle

Backward angles sensitive to α - β (what we extract)

 χ EFT theory

Baldin Sum Rule:

$$\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_{\omega_{\rm thr}}^{\infty} \frac{\sigma_{Tot}(\omega')}{\omega'^2} d\omega' \quad \text{Total photo-nuclear cross-section (from other experimental data)}$$

Proton polarizabilities directly from ¹H target.

Technique: measure absolute differential cross-sections

Nuclear Compton scattering: Scattering angle $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Powell} - \frac{e^2}{4\pi M_N} \left(\frac{\omega'}{\omega}\right)^2 \omega \omega' \left\{\frac{\alpha+\beta}{2} (1+\cos\theta)^2 + \frac{\alpha-\beta}{2} (1-\cos\theta)^2\right\} + O(\omega^4)$ Cross-section of point-like particle with anomalous magnetic moment incoming energy incoming energy (cross-check with Baldin sum rule) Backward angles sensitive to $\alpha+\beta$ (what we extract)

Baldin Sum Rule:

$$\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_{\omega_{thr}}^{\infty} \frac{\sigma_{Tot}(\omega')}{\omega'^2} d\omega' \quad \text{Total photo-nuclear cross-section (from other experimental data)}$$

Proton polarizabilities directly from ¹H target.

Neutron polarizabilities harder to determine:

- Uncharged, α_{E1}^n , β_{M1}^n appear at the order of ω^4 , smaller cross section
- No stable free neutron target.
- Can use light nuclear targets: **D**, ⁴He, ³He for different summed isoscalar combinations

χ EFT calculations of differential cross-sections

• χ EFT gives unique **angular dependence at different energies** for different α and β input values. (later, plots for different α and β for sensitivity)

(Thanks to H. Griesshammer)

χ EFT calculations of differential cross-sections

(Thanks to H. Griesshammer)

- χ EFT gives unique **angular dependence at different energies** for different α and β input values. (later, plots for different α and β for sensitivity)
- Cross-sections are ~ 10 -100 nb. Need **liquid target** to have high density
- Goal $\sim \pm 3$ % total uncertainty with $E_{\nu} = 60 100$ MeV (sub pion-threshold)

χ EFT calculations of differential cross-sections

- χ EFT gives unique **angular dependence at different energies** for different α and β input values. (later, plots for different α and β for sensitivity)
- Cross-sections are ~ 10 -100 nb. Need **liquid target** to have high density
- Goal $\sim \pm 3$ % total uncertainty with $E_{\nu} = 60 100$ MeV (sub pion-threshold)
- While higher mass means larger cross-sections, but the theory gets more difficult and newer effects (good cross-check).
- Also need to consider systematics from **inelastic channels** (not of interest):

$$\gamma + D = n + p + \gamma' (> 2.2 \text{ MeV loss})$$
$$\gamma +^{3}\text{He} = p +^{3}\text{He} + \gamma' (> 5.5 \text{ MeV loss})$$
$$\gamma +^{4}\text{He} = n +^{3}\text{He} + \gamma' (> 20 \text{ MeV loss})$$

• Need detector resolution to separate these from (elastic) Compton scattering. Difficult for D.

High Intensity γ -Ray Source (HI γ S)

- Quasi-monoenergetic, pulsed γ -ray beams
- Synchrotron storage ring for bunches of ~ 1 GeV electrons.
- Free-electron-laser light pulse from one electron bucket reflects off mirror, and Compton scatters off next bucket of electrons to get boosted to gamma energies.
- γ beam rate and bandwidth depends on energy, collimator, mirror conditions.

High Intensity γ -Ray Source (HI γ S)

Located at Duke University & Triangle Universities Nuclear Laboratory (TUNL)

Delivered to experiments averaged over $\sim 2-3$ weeks each

γ beam to "Gamma Vault"

collimator

 E_{γ} , collimator size, γ rate 60 MeV, 16 mm, 1.4E7 γ /s 100 MeV, 13 mm, 4E6 γ /s* 100 MeV, 16 mm, 1.2E7 γ /s 87 MeV, 16 mm, 1.1E7 γ /s (*1st time running @ 100 MeV)

- Quasi-monoenergetic, pulsed γ-ray beams
- Synchrotron storage ring for bunches of ~ 1 GeV electrons.
- Free-electron-laser light pulse from one electron bucket reflects off mirror, and Compton scatters off next bucket of electrons to get boosted to gamma energies.
- γ beam rate and bandwidth depends on energy, collimator, mirror conditions.

Experimental setup in Gamma Vault

Experimental setup in Gamma Vault

Large backward-angle detector #1

5x Smaller "HINDA" NaI detectors

Sodium-Iodide Detectors

HINDA array (our "small" detectors)

25cm x 25 cm core

DIANA (large backward det. #1)

Core: 48-cm-Ø, 51-cm-long

Plastic Shield

BUNI (large backward det. #1)

Core: 2x 56-cm-long, Ø27cm core glued together

- Size needed for $\sim 100 \text{ MeV } \gamma$'s
- Single crystals help with timing
- $\sim 100\%$ detection efficiency of showers
- Outer segments infer "energy leakage"

Published results

3-K cryogenic target constructed (cooling directly with 2nd stage of GM cryocooler). More on target later.

Demonstrates target, beam, and HINDA detectors. Energy resolution to separate quasi-elastic not needed.

Published results

rectly with 2nd stage of GIVI C13.

4He (60 MeV, 7 angles): Sikora et al. PRC (2017).

3 angles): Li et al. PRC (2020). 3-K cryogenic target constructed (cooling directly with 2nd stage of GM cryocooler). More on target later.

Demonstrates target, beam, and HINDA detectors. Energy resolution to separate quasi-elastic not needed.

¹H (80 MeV, 3 angles): Li et al. PRL (2022).

Our result:

$$\alpha_{E1}^p = 15.4 \pm 1.8_{\text{stat}},$$

$$\beta_{M1}^p = 2.1 \pm 2.0_{\text{stat}},$$

Mornacchi et al. (MAMI), PRL (2022). (All uncertainties added in quadrature):

$$\alpha_{E1}^p = 10.99 \pm 0.63$$

$$\beta_{M1}^p = 3.14 \pm 0.51$$

2.3 σ tension in α^p

▲ Illinois $\delta\alpha = \pm 2, \delta\beta = \mp 2$

100

Time and energy histograms in a detector

- Cosmic muon peak @ ~ 250 MeV, rate of tail in ROI still high \rightarrow cosmic veto paddles
- γ bunches (~ 10 ns wide every ~150 ns) allow time cuts and observation of beam-uncorrelated BG
- Inelastic processes lower in energy than elastic Compton → lower energy cut
- Count rate in **ROI** ~ 10-20 /hour in large detectors
- Empty cell subtraction to remove beam-correlated BG due vacuum windows & cell walls + others

23

Example data from D₂

FIG. 4. Measured in-beam spectrum by DIANA. ToF and shield cuts were applied to this energy spectrum.

• Above measures beam bandwidth convoluted with detector response: $\sim [(\text{beam } 2\%)^2 + (\text{detector response } 2\%)^2]^{1/2}$

Example data from D₂

FIG. 4. Measured in-beam spectrum by DIANA. ToF and shield cuts were applied to this energy spectrum.

• Above measures beam bandwidth convoluted with detector response: $\sim [(\text{beam } 2\%)^2 + (\text{detector response } 2\%)^2]^{1/2}$

Cell full and cell empty subtraction

- Compton peak energy shift depends on angle of detector & mass of target.
- Corrects for BGs not from the target liquid
- Dominated by scattering by Kapton in vacuum & cell windows (carbon with high Z)

Deuteron Compton Scattering

- 60 MeV on deuteron data taken in 2022 (**Danula Godagama**, **PhD thesis**). Paper in draft.
- Needed the large DIANA & BUNI detectors (at backwards angles) to separate inelastic contribution
- Adding only our $3x d\sigma/d\Omega$ to the world data set of ~50 values to a χ EFT fit, we improve $\alpha_n \& \beta_n$ by ~10-15%

Example: 150° HINDA detector.

Deuteron Compton Scattering

- 60 MeV on deuteron data taken in 2022 (**Danula Godagama**, **PhD thesis**). Paper in draft.
- Needed the large DIANA & BUNI detectors (at backwards angles) to separate inelastic contribution
- Adding only our $3x \, d\sigma/d\Omega$ to the world data set of ~50 values to a χ EFT fit, we improve $\alpha_n \& \beta_n$ by ~10-15%
- Besides statistics, still contending with sizable correction for inelastic falling into ROI.
- 3He (never done before!) balances good statistics, good theory (mass 3), and inelastic 5 MeV away.

Example: 150° HINDA detector.

L³He Cryotarget

- Kapton cell & vacuum window to reduce backgrounds (and for optical access). Made from 0.1-mm-thick epoxied-together sheets. (Flimsy!)
- 1.7 K operation temperature for density & density stability
- In-house recirculating ⁴He 1K pot precooled with 1.5 W @ 4K GM cryocooler.
- Target liquid cooled with a thermosiphon loop
- 0.3 L of liquid in cell -> 300 bar-L of 3 He. (~50 bar-L in vapor above liquid.)

Cryogenic performance

Initial cooldown

- Ran 1st time Summer '24.
- 2x 4 weeks continuously cold runs
- Temperature stability at operating better than ± 3 mK
- Did not observe any loss of ³He
- < 1 bar*L used for RGA studies
- 4 He contamination in 3 He $\sim 2\%$ level

Visual access to target cell

During condensing and filling cell with ³He

During operation when full (Light illuminating fluid, which heats it, turned off during production data)

Systematics from ³He cryotarget

- Summer 2024: 1st experiment @ 60 MeV to test system (Ethan Mancil PhD thesis)
- Main physics run: 100 MeV, 360 hrs production data (\sim 12hr /day), \pm 3-4% statistics reached (**Jingyi Zhou PhD thesis**)

From ³He cryotarget design document:

Source of uncertainty	Uncertainty
Target length measurement at room temperature	0.2 %
Thermal contraction	0.1 %
Pressurized cell flexing against vacuum	0.8 %
Thermometer uncertainty	< 0.1 %
Temperature stability	< 0.1 %
Bubbling	< 0.1 %
Temperature gradients	0.7%
Total (added in quadrature)	1.1 %

Measured ³He cryotarget performance from Summer 2024:

- Temperature stability: better than ± 5 mK leads to < 0.1% systematic
- Temperature gradient: measured < 10 mK difference top and bottom. Systematic < 0.1%
- Thermometer calibration uncertainty: $< \pm 10$ mK. Systematic < 0.1% (radiation levels are low)
- **Bubbling:** analyze videos and develop theory (depends on latent heat, bubble velocity, etc.)
- Length of target (pressure flexing and beam position on curved end windows): under study
- 4 He contamination: Measured ~ 2% 4 He in 3 He gas inventory. 4 He is soluble in L 3 He. RGA studies.
- **Note:** literature values for mass density of liquid 3 He is \pm 1-2 %

³He @ 100 MeV results: DIANA 150° detector

(Thanks, Jingyi Zhou for this and next figure.)

³He results: differential cross-sections

- Recall: No other data to compare because first time this process has been measured!
- Large backward angles constrain physics.
- Forward angles verifies the Baldin sum rule.
- ("Projection" = still working on analysis of data from these detectors.)

³He results: differential cross-sections

- Recall: No other data to compare because first time this process has been measured!
- Large backward angles constrain physics.
- Forward angles verifies the Baldin sum rule.
- ("Projection" = still working on analysis of data from these detectors.)

Compton@HIGS summary & future

- ¹H @ 80 MeV: 2.3 σ tension in proton polarizabilities. Proposing to revisit at 100 MeV
- Upgraded Cryotarget to 1.7 K and safely handling 350 bar-L of ³He and incorporated large NaI detectors (DIANA & BUNI) for energy resolution

Compton@HIGS summary & future

- ¹H @ 80 MeV: 2.3 σ tension in proton polarizabilities. Proposing to revisit at 100 MeV
- Upgraded Cryotarget to 1.7 K and safely handling 350 bar-L of ³He and incorporated large NaI detectors (DIANA & BUNI) for energy resolution
- Beam flux monitoring system & technique improved + vacuum tube for reducing air scattering BGs
- D @ 60 MeV (3 datum) improved **neutron polarizabilities by 10-15%.** Proposing to revisit at 80 MeV.
- ³He @ 100 MeV (2 datum) should improve **neutron polarizabilities by 30-50%.** Have data @ 60 MeV. Proposing to do this at 80 MeV.

Compton@HIGS summary & future

- ¹H @ 80 MeV: 2.3 σ tension in proton polarizabilities. Proposing to revisit at 100 MeV
- Upgraded Cryotarget to 1.7 K and safely handling 350 bar-L of ³He and incorporated large NaI detectors (DIANA & BUNI) for energy resolution
- Beam flux monitoring system & technique improved + vacuum tube for reducing air scattering BGs
- D @ 60 MeV (3 datum) improved **neutron polarizabilities by 10-15%.** Proposing to revisit at 80 MeV.
- ³He @ 100 MeV (2 datum) should improve **neutron polarizabilities by 30-50%.** Have data @ 60 MeV. Proposing to do this at 80 MeV.
- This summer (2025) ran with ${}^4\text{He}$ @ 90 & 100 MeV (Mitchell Lewis PhD thesis). There is now χ EFT theory for ${}^4\text{He}$. Early estimates ~ 30 % improvement in neutron polarizabilities.
- R&D for next generation of experimennts: spin polarizabilities @ HIGS below pion threshold.

Spin polarizabilities @ HIGS

- Compton amplitude $\mathcal{O}(\omega^3)$ gives 4x spin polarizabilities: characterizes stiffness of nucleons' spin degrees of freedom to photons
- Requires polarized beams + polarized target → Dynamic Nuclear Polarized (DNP) protons in polymers
- To suppress backgrounds from carbon scattering → scintillating target

Spin polarizabilities @ HIGS

- Compton amplitude $\mathcal{O}(\omega^3)$ gives 4x spin polarizabilities: characterizes stiffness of nucleons' spin degrees of freedom to photons
- Requires polarized beams + polarized target \rightarrow Dynamic Nuclear Polarized (DNP) protons in polymers
- To suppress backgrounds from carbon scattering → scintillating target
- DNP: polarize electrons in ~ 5 T. Apply ~10 mW microwaves @ ~0.7 K to transfer e-polarization to nuclear pol.
- "Frozen spin": remove 5 T magnet (blocks outgoing photons), cool down to 10 mK, and leave in small ~ mT coils
- Ben van den Brandt (PSI) was developing **TEMPO** (free-radical) doped scintillating films
- **R&D** launched at Montclair

Undergrad Taha Qadir

solvent-cast polyvinyl toluene scintillating films

scintillation tests with PMT

0.4 K dry-3He fridge (a) Montclair

Kent Leung, Nucleon Polarizabilites Compton@HIGS, Nuclear Photonics

Thank you!

PhD thesis projects