

Improved ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴⁰Pu Photofission Cross Sections Across the GDR

Nuclear Photonics 2025

Oct 6-10, 2025

Forrest Friesen on behalf of the collaboration:

Jack Silano, Anton Tonchev, Anthony Ramirez (LLNL) Sean Finch, Forrest Friesen (Duke, TUNL) Ron Malone (US Naval Academy) **Adriana Banu (James Madison University)**

Drake Brewster (UC Berkeley)

Prepared by LLNL under Contract DE-AC52-07NA27344.

Outline

- History of photofission cross section data
 - Livermore and Saclay
- Measurements at HIGS
 - $^{235}U(\gamma,f)$, $^{238}U(\gamma,f)$, $^{239}Pu(\gamma,f)$, $^{240}Pu(\gamma,f)$
 - $^{238}U(\gamma,n)$ activation
- Results

Historical Photofission Cross-Section Measurements

- Systematic photoneutron measurements for most nuclei performed at two labs:
 - Saclay (France)
 - Livermore (USA)
- Similar approach:
 - Quasi-monoenergetic γ -ray beams
 - Detect neutrons with rings of moderated thermal neutron detectors

J. T. Caldwell et al. Nuclear Science and Engineering, 73(2), 153–163 (1980).

0.20

0.15

0.10

0.05

Reaction Channels Extracted From Photoneutrons

S

238 U(γ ,F): Evaluators Must Choose Between Discrepant Data

239 Pu(γ ,F): Single Monoenergetic Measurement Above 12 MeV

No Saclay data for this nucleus, evaluations have a single measurement to rely on.

Modern Photofission Cross-Section Measurements at HIGS

New Approach: Fission Detection Without Neutrons

- Neutron detection is hard
- Disentangling photofission neutrons from (γ,n) , $(\gamma,2n)$ and $(\gamma,3n)$ is harder
- Detect fission fragments with ionization chambers instead
 - >97.5% fission detection efficiency

²³⁸U deposits ~100 µg/cm²

- Activation measurements at select energies
 - Foil package with ¹⁹⁷Au, ²³⁸U
- $^{238}U(\gamma,n)$
 - 237 U has 6.7 day half life, 208 keV γ ray
- 197 Au(γ ,n)
 - 196 Au has 6.2 day half life, 355 keV γ ray

C. Bhatia *et al*. NIM A 757, 7-19 (2014).

Photofission Experimental Layout

 Four DFCs loaded with a pair of foils with same isotope

0.5" diameter active deposits

 One DFC with ²³⁵U+²³⁸U pair for beam divergence characterization

1" diameter active deposits

¹⁹⁷Au, ²³⁸U activation target holder

High Intensity Gamma-ray Source (HIGS)

Beam energies: 7 – 19 MeV

0.25 MeV steps 7 – 17 MeV

0.5 MeV steps 17 – 19 MeV

Energy spread: 3% FWHM

• Flux on target: $5 \cdot 10^7 - 4 \cdot 10^8 \, \gamma$ /s

This is why we can have <100 µg targets and detect fission fragments

HIGS Experiment February 26th – March 7th, 2025

- 74 hours of HIGS PAC beamtime HIGS-P-10-24 (PI Sean Finch)
 - Two FEL wavelengths required to span the full energy range
 - 540 nm: 7-13 MeV
 - 460 nm: 13-19 MeV
 - Mirror change halfway through
- 7 MeV \leq E_{γ} \leq 19 MeV
 - 0.25-MeV steps up to 17 MeV
 - 0.5-MeV steps up to 19 MeV
 - Six 238 U(γ ,n) activation measurements

238 U(γ ,n) activation energies

Constraining Uncertainties: Actinide Target Masses

- Three independent methods:
 - Low geometry α spectrometry
 - 2π gas counting
 - γ -ray counting
- Better than 1.3% uncertainty for all targets

J. A. Silano et al., Nucl. Instrum. Methods in Phys A 1063, 169234 (2024).

Measuring the HIGS γ -ray Beam Flux

- Mirror Paddle
 - Scintillator observes backscattered radiation from γ -ray beam passing through mirror
- 1 Paddle
 - Thin scintillator directly in beam

- Large Nal detector for calibrating absolute flux
 - ~100% efficiency
- Au activation foils for validation

Laboratory LLNL-CFPRES-2011892

Results

- Photofission cross-section ratios
 - All targets in the beam simultaneously, flux cancels out
 - Depends only on relative actinide target masses, fission counts, and a few minor corrections
 - Can be measured to higher precision (1.6 3.2%) than absolute cross sections
 - Valuable for nuclear data evaluations
- Absolute Photofission Cross Sections
 - The main goal, with 4 6% uncertainty
- $^{238}U(\gamma,n)$

235 U(γ ,f)/ 238 U(γ ,f) Cross-Section Ratio

Same DFCs, different configuration, different targets

Krishichayan *et al.* Phys. Rev. C **98**, 014608 (2018) S. Finch *et al.* Phys. Rev. C **107**, 039906 (2023)

235 U(γ ,f)/ 239 Pu(γ ,f) Cross-Section Ratio

Major discrepancy at high E_{γ} for any ratio with 239 Pu...

²³⁵U Photofission Cross Section

²³⁸U Photofission Cross Section

$^{238}U(\gamma,n)$

²³⁹Pu Photofission Cross Section

- Large systematic deviation above ~12.5 MeV
- Livermore data issues unfolding the $(\gamma,2n)$ channel?

²⁴⁰Pu Photofission Cross Section

Future Plans

- Finalize analysis and publish ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu photofission cross sections for 7 19 MeV
- Planned experiment to add ²⁴²Pu and increase energy range
 - ²⁴²Pu fission chamber foils fabricated at LLNL, currently being characterized
 - Measure ²⁴²Pu(γ ,f) in 7 19 MeV
 - Measure all targets from 19 25 MeV

Acknowledgements

J. Silano

A. Ramirez

A. Tonchev

R. Malone

S. Finch F. Friesen

D. Brewster

Backup

National Laboratory LLNL-CFPRES-2011892

Fission Chamber Efficiency

