The 5th Nuclear Photonics Conference

Contribution ID: 75 Type: Oral presentation

Broadband MeV to multi-GeV 10 PW laser-driven gamma-rays generation, characterization and possible applications

Tuesday, October 7, 2025 5:20 PM (30 minutes)

Broadband MeV to multi-GeV 10 PW laser-driven gamma-rays generation, characterization and possible applications

V. Lelasseux 1, P. Ghenuche 1, V.L.J. Phung 1, H. Ahmed 2, D.L. Balabanski 1, M.O. Cernaianu 1, D. Choudhury 1, 3, S. Corde 4, 5, F. D'Souza 1, 6, M. Gugiu 1, V. Iancu 1, S. Krishnamurty 7, I. Kargapolov 7, L. Lancia 8, G. Lorusso 9, A. Leblanc 4, V. Malka 1, 7, J.R. Marques 8, Y. Nakamiya 1, F. Rotaru 1, K. Ta Phuoc 10, A.M. Talposi 7

- 1. Extreme Light Infrastructure Nuclear Physics (ELI-NP), Horia Hulubei National Institute for R&D in Physics and Engineering (IFIN-HH), 30 Reactorului Str., 077125 Bucharest-Magurele, Romania
- 2. Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
- 3. Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- 4. Laboratoire d'Optique Appliquée, ENSTA Paris, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
- 5. SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- 6. Department of Physics, Lund University, P.O. Box 118, SE-22100, Lund, Sweden
- 7. Weizmann Institute of Science, 7610001 Rehovot, Israel
- 8. LULI, CNRS, École Polytechnique, CEA, Sorbonne Université, Institut Polytechnique de Paris, 91128 Palaiseau, France
- 9. National Physical Laboratory, Teddington TW11 0LW, United Kingdom
- 10. CELIA, Université de Bordeaux-CNRS-CEA, 33405 Talence, France

Recent advancements in high intensity laser technology, with the advent of multi-PW facilities around the world [1], is allowing the investigation of multiple regimes to produce various compact high intensity particle sources [2,3,4,5]. Among the most promising techniques, the use of a multi-GeV electron beam accelerated through Laser WakeField Acceleration (LWFA) [6] to produce a secondary photon beam through a variety of processes (Bremsstrahlung [7], reverse Compton scattering [8], betatron radiation [9]) has been investigated during several experimental campaigns in the 10 PW long focal experimental area of ELI-NP. Due to the bunched nature of those photon beams, classical germanium or scintillator-based photon by photon detectors cannot be used, rendering the beam characterization in itself challenging. To circumvent this difficulty, diagnostics using scintillator stacks have been developed [10]. We will report here on the effort done at ELI-NP to develop a reliable gamma spectrometer adapted to this high intensity laser environment as well as the results it obtained during the commissioning campaigns of the 10 PW long focal experimental area.

References:

- [1] C. N. Danson et al, Petawatt and exawatt class lasers worldwide, High Power Laser Science and Engineering 7. e54 (2019)
- [2] E. Rockafellow et al, High charge laser accelerations of electrons to 10 GeV, Nucl. Instr. and Meth. A, 170586 (2025)
- [3] M. Mirzaie et al, All-optical nonlinear Compton scattering performed with a multi-petawatt laser, Nat. Phot. 18(11), 1212-1217 (2024)
- [4] T. Ziegler et al, Laser-Driven high-energy proton beams from cascading acceleration regimes, Nat. Phys. 20(7), 1211-1216 (2024)
- [5] F. Zhang et al, Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser, Nat. Phys. 1-7 (2025)
- [6] T. Tajima and J.M. Dawson, Laser Electron Accelerator, Phys. Rev. Lett. 43, 267 (1979)

- [7] A. Compant La Fontaine, C. Courtois and E. Lefebvre, Phys. Plas. 19(2) (2012)
- [8] K. Ta Phuoc et al, All-optical Compton gamma-ray source, Nat. Phot. 6(5), 308-311 (2012)
- [9] J. Ferri et al, High-Brilliance betatron gamma-ray source powered by laser-accelerated electrons, Phys. Rev. Lett. 120(25), 254802 (2018)
- [10] G. Fauvel et al, Compact in-vacuum gamma-ray spectrometer for high-repetition rate PW-class laser-matter interaction, Rev. Sci. Instr. 96(2) (2025)

Primary author: LELASSEUX, Vincent (ELI-NP, IFIN-HH)

Co-authors: Dr GHENUCHE, Petru (ELI-NP, IFIN-HH); Dr PHUNG, Vanessa (ELI-NP, IFIN-HH)

Presenter: LELASSEUX, Vincent (ELI-NP, IFIN-HH)

Session Classification: Session IV