
Photon strength functions and nuclear
level densities at the ELI-NP/IFIN-HH

facilities

Pär-Anders Söderström
par.anders@eli-np.ro

Fifth International Conference on Nuclear Photonics



Introduction

Fermi’s Golden Rule

λi→f =
2π
ℏ
|⟨f |H ′|i⟩|2ρ(Ef ) (1)

P(Ex ,Eγ) ∝ T (Eγ)ρ(Ex − Eγ) (2)

Hauser-Feshbach model

σ(n, γ) ∝
∑
Jπ,XL

∫
TXL(Eγ)ρ(Ex , J, π)dEγ (3)

K. Hagiwara, et al.: Prog. Theo. Exp. Phys. 2019 (2019) 023D01

▶ Decay probability proportional to transition strength times the density of final states
▶ Measure decay probabilities for γ rays of different energy as a function of excitation

energy, P(Ex ,Eγ)

▶ Cross sections proportional to transition strength times the density of final states
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Photon strength functions
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A. Zilges, et al.: J. Phys. Conf. Ser. 580 (2015) 012052

fXL(Eγ) =
T (Eγ)

2πE 2L+1
γ

, (4)

https://www.eli-np.ro/
thematics/pnp.php
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ELIGANT - ELI Gamma Above Neutron Threshold

▶ An array of CeBr and LaBr for γ-rays,
liquid scintillators and Li-glass detectors
for neutrons

▶ Tested in-beam (2022-2025 campaigns at
ROSPHERE, IFIN 9MV)

P.-A. Söderström, et al.: Nucl. Instrum. Methods Phys. Res.

A 1027 (2022) 166171

▶ 3He tube array contained in a paraffin
moderator for neutron counting

▶ Detector is operational
▶ Tested in-beam

C. Clisu, et al.: EPJ Web Conf. 284 (2023) 01015

P.-A. Söderström, et al.: Submitted, arXiv:2510.00042

[physics.ins-det]
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ELI-NP, IFIN-HH, and Tandem → ELIFANT

▶ Combining the large volume γ-ray
detectors with the ROSPHERE
anti-Compton shields

▶ In-beam experiments using the 9MV
Tandem at IFIN-HH

▶ Collaboration between ELI-NP and
Department of Nuclear Physics

▶ Clean measurements of high-energy γ-rays

S. Aogaki, et al.: Nucl. Instrum. Methods Phys. Res. A

1056 (2023) 168628
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Gamma strength with ion beams
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▶ Oslo method can measure γ-ray strength functions and level densities simultaneously
▶ Introduces some model dependence in the results
▶ Currently only done in the Oslo Cyclotron Laboratory (in the traditional approach)
▶ First experiment at IFIN-HH facilities in March 2023 (P.-A. Söderström (ELI-NP),

M. Markova (U. Oslo))
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First experiment: results from the Sn nuclei
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P.-A. Söderström, et al.: Phys. Rev. C 112 (2025) 024327, Calculations: N. Tsoneva
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Astrophysics from the Sn nuclei
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Including the newly measured results
in the cross-section calculations

σ(n, γ) ∝
∑
Jπ,XL

∫
TXL(Eγ)ρ(Ex , J, π)dEγ

(5)
yield a significantly increased
neutron-capture cross-section
compared to TENDL, and a
significantly higher neutron-capture
reaction rate for 111Sn(n, γ)112Sn at
temperature T ≈ 4 GK.

P.-A. Söderström, et al.: Phys. Rev. C 112 (2025) 024327, Calculations: Y. Xu
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Photonuclear physics

(Z, N)
g.s.

separation threshold

photoactivation

(Z´±1, N´ 1)

±

n, p, α, ff

(Z´, N´)

▶ Incoming γ ray can select individual states to excite
▶ Above particle separation threshold, particle decay to neighbouring nucleus, fission, etc.
▶ ... or γ-decay. This type of branching probabilities will be one key topic for measurements
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What was published from 128Te at HIγS

▶ Is there a unique gamma strength function in 128Te?
▶ Experimental spread significantly higher than

DICEBOX simulations
▶ Deviations cannot be explained by the statistical

uncertainties and the expected PT fluctuations alone
▶ Does the decay widths not follow a PT distribution?
▶ Is the BA hypothesis not fulfilled in this nucleus?
▶ Will the observed fluctuations remain in non-trivial

(Jπ = 1−) spin distribution?
J. Isaak, et al.: Phys. Lett. B 788, 225 (2019)
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128Te experiment at IFIN-HH
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▶ Experiment performed with 128Te target at IFIN-HH in 2024
▶ Carbon backing, huge carbon background at Ex > 7 MeV
▶ Limited excitation energy range

P.-A. Söderström, et al.: Phys. Scr. 100, 075301 (2025)
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Note on normalization in The Oslo method
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▶ If we know the level densities, ρ(Ex), and the transition
probabilities, T (Eγ), the decay probability matrix can be
calculated from

P(Ex ,Eγ)th =
ρ(Ex − Eγ)T (Eγ)∑
Eγ

ρ(Ex − Eγ)T (Eγ)
, (6)

▶ Use χ2 fit to find any ρ(Ex) and T (Eγ) that reproduce the data
▶ Infinite number of solutions, but related via differential equations
▶ Only depend on three parameters as

ρ̃(Ex − Eγ) = A0 exp[α(Ex − Eγ)]ρ(Ex − Eγ), (7)

T̃ (Eγ) = B0 exp(αEγ)T (Eγ) (8)

▶ Just need to determine A0, B0, and α
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128Te experiment at IFIN-HH
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▶ Normalize γSF on the (γ, γ′γ′′) data from HIγS
▶ Use the normalization to fix the NLD slope

P.-A. Söderström, et al.: Phys. Scr. 100, 075301 (2025)
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Comparison with neutron resonance normalization
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▶ (γ, γ′) normalization reasonable?
▶ Typically Oslo-method

normalization is performed on
neutron capture data

▶ 127Te unstable, no n-capture
▶ Estimate approximate quantities

from systematics, interpolation
between odd-A and even-A data
corrected for pairing energy

▶ Agrees remarkably well!
▶ Massive difference between

microscopic and experimental
▶ Cause of underestimated PT

fluctuations in DICEBOX?
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DICEBOX simulations
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▶ DICEBOX calculations performed with the obtained
experimental data

▶ The BSFG model with the spin cut-off factor by von Egidy
and Bucurescu (2005), a = 13.04 MeV−1 and E1 = 0.68 MeV
J. Isaak, et al.: Phys. Lett. B 788, 225 (2019)

▶ Good agreement with current experiment
▶ Fluctuations of partial radiation widths according to

Porter-Thomas distribution
▶ E1 PSF is given in a tabulated form from experiment
▶ Constant plus Lorentzian M1 PSF, Lorentzian E2 PSF
▶ 10 realisationsfrom the given NLD, decay widths from the

average PSF with a Porter-Thomas probability distribution
▶ 10 typical expected Nuclear Resonance Fluorescence spectra

and variations in unresolved strength
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Brink-Axel hypothesis: common final states
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▶ Brink-Axel hypothesis: Strength
function depends only on energy
difference between initial and final states

▶ Must be violated on the level of the PT
fluctuations (if PT distribution valid)

▶ σf ,PT/f =
√

2/n(Eγ ,Ei)

▶ Analyze the matrix based on selected
regions corresponding to common final
state

▶ Approximately deviation of two from
just statistical χ2. However, consistent
if estimated Porter-Thomas fluctuations
considered
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Brink-Axel hypothesis: common initial states
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▶ Brink-Axel hypothesis: Strength
function depends only on energy
difference between initial and final states

▶ Must be violated on the level of the PT
fluctuations (if PT distribution valid)

▶ σf ,PT/f =
√

2/n(Eγ ,Ei)

▶ Analyze the matrix based on selected
regions corresponding to common initial
state

▶ Approximately deviation of two from
just statistical χ2. Including estimated
Porter-Thomas fluctuations does not
change the picture significantly!

Fifth International Conference on Nuclear Photonics, October 7th 2025 17



Summary and conclusions

▶ We have started doing photon strength-function and nuclear level density measurements
at the 9MV Tandem

▶ First experiment on 112Sn and 114Sn successful
▶ Photon strength-function, nuclear level density, microscopic structure, astrophysical

reaction rates
▶ First experimental nuclear level density of 128Te, normalized to (γ, γ′) data
▶ Does not explain the observed departure from just Porter-Thomas violations of the

Brink-Axel hypothesis
S. Aogaki, et al.: Nucl. Instrum. Methods Phys. Res. A 1056 (2023) 168628

P.-A. Söderström, et al.: Phys. Scr. 100 (2025) 075301

P.-A. Söderström, et al.: Phys. Rev. C 112 (2025) 024327
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