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Spin-polarized neutron source 
has been expected to be unique particle source.

5R. Yamada, Institute of Laser Engineering, Osaka.

Features of laser-driven neutron source 

- Wide range energy of neutron with meV~MeV.

- Short pulse

- Point source

Conventional: Nuclear reactor, Accelerator, Recent: Laser-driven neutron source

100 neV 1 meV 25 meV (300 K) 1 eV           1 keV                      1MeV              Energy

Cold

neutron
Epi-thermal 

neutron

Thermal 

neutron
Fast neutron

Ultra cold 

neutron

Neutron diffraction Neutron resonance 

absorption Nuclear reaction

Neutron radiographyNeutron scattering

Nuclear reaction

S.R. Mirfayzi, et, al, Sci. Rep, 2020.

S. R. Mirfayzi et, al., Appl. Phys. Lett. 2020.

Applications of spin-polarized neutron

- Magnetic substance

- Magnetic structure analysis of nano-order size

- Superconductors.
Polarized Neutron Scattering Tutorial.(book)

National Institute of Standards and Technology (NIST).

Magnetic field in the high-density plasma 
can be diagnosed 
by the spin-polarized neutron.
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Application of spin polarized neutron in high density plasma.
Imaging of laser-driven magnetic field.

6R. Yamada, Institute of Laser Engineering, Osaka.

Neutron can penetrate high density matters.

Neutrons are deflected 
by magnetic field gradient (θ ∝ dB/dx × Z),

while not affected by E-field.

Features of neutron

⚫ High transmittance

⚫ Affected by magnetic fields, while unaffected by electric fields
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7R. Yamada, Institute of Laser Engineering, Osaka.

Extraction method of spin-polarized neutron.

In our study, aiming to extract spin-polarized neutron using Stern-Gerlach method (1922).

Combination of laser-driven neutron source and laser-driven magnetic field,

100% spin-polarized neutron is extracted.

3He spin filter is generally used for the generation of spin-polarized neutron beam.

Spin polarized  neutron are separated

by magnetic field gradientNuclear 

reactor

Non-uniform magnetic field

Neutron beam Separation of two

Drawback of the 3He spin filter

- Complex generation devices (lasers, magnets)

- 100% spin-polarized neutrons are difficult to produce
3He spin filter

Neutron beam
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Theoretical prediction of neutron polarization 
by magnetic field gradients 

8R. Yamada, Institute of Laser Engineering, Osaka.

Neutron deflection angle θ is given by neutron polarization. 

𝜽 = ± 𝟏. 𝟎𝟑 × 𝟏𝟎−𝟕 𝑳 ∙
𝒅𝑩

𝒅𝒙
⋅
𝟏

𝑬

Thermal neutron shows 

bigger deflection. 
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L = 100 µm

Diameter of 

laser spot size

Neutron

0.19 eV

0.05 eV

0.02 eV

Split is showing less than ~1mm.

0.19 eV

(1.0 µs)

0.02 eV

(3.0 µs)

0.05 eV

(2.0 µs)

0 cm

[1] Hiroki Morita, et, al, 

Reviews of Modern Plasma Physics 2023 1.2 mm

0.7 mm

0.4 mm 1 cm

Neutron, E

B  = 1kT

dx = 2.45 µm
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~kT magnetic field is generated by ultra intense laser

9R. Yamada, Institute of Laser Engineering, Osaka.

Y. Arikawa et, al., Phy. Rev. Research.2023

Particle-in-Cell simulation

~kT order magnetic field is generated by ~ps laser

→ Using this  agneti  field, 

Spin-polarized neutron shows 1.0 mm distance of deflection.

High magnetic field 

gradient

10 kT / 10 µm order

Surface 

current
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Principle of the measurement.
High efficiency thermal neutron imaging detector is needed.

10R. Yamada, Institute of Laser Engineering, Osaka.

Requirement on the detection of spin-polarized neutron

1. Robust for noises 

(non-neutron particles and electro-magnetic pulse)

2. High efficiency for thermal neutron (~ 2.4 %)

3. High spatial resolution (~ 1 mm) 

4. Large surface area 

Predicted signal on CR-39
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High sensitivity and robust thermal neutron imaging detector 
by using 6LiF and CR-39.

12R. Yamada, Institute of Laser Engineering, Osaka.

Stack of 6LiF plate and CR-39

Merit

1. No sensitivity for X-ray and 

electromagnetic noise.

2. High sensitivity for thermal neutron.

3. High spatial resolution (~1 mm)

4. Easy and large area size. (~1 cm)

Thermal 

neutron

6Li (18 µmt)
164Dy activation 

(25 µmt)

~30%
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CR-39 + AI technique is introduced 
to discriminate neutron signal and backgrounds

13R. Yamada, Institute of Laser Engineering, Osaka.

6Li + n(0.1eV) → α + 3H + 4.79 MeV

The energy of alpha particles is 2.05 MeV.
[1]Y. Kuramitsu, et al., POP 2024

[2]M. Kanasaki, et,al, J.Plasma Fusion Res 2012
[3]T. Taguchi, et,al, Rev. Sci. Instrum. 2024.

The pit size of thermal neutron

~14 µ  is the neutron indu ed α parti le 

~ etching time 

Deep learning is applied to 

distinguish pits of CR-39 [1-3]   

Alpha particle curve
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The filter has been placed to attenuate the background signal 
and confirm thermal neutron signals.

14R. Yamada, Institute of Laser Engineering, Osaka.

1. Al  (0.3mmt)     : Attenuate protons

2. Pb (3mmt)        : Absorb protons and X-ray

3. CR-39               : Detector

4. 6LiF    .5  t   : Convert ther al neutron to α 

Cd, Ag, Dy, Hf and Au have high attenuation  

for thermal neutron.

If there are shape of metal,

thermal neutrons are detected.

1               2                3         4

Proton

X-ray

Thermal

neutron

Alpha

Behind Al filter
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PHITS : Monte Carlo simulation

15R. Yamada, Institute of Laser Engineering, Osaka.

Au

1mmt

Ag

0.1mmt
Cd

0.5

mmt

Hf

1mmt

Thermal 

neutron 

injection n

Simulation setup Experiment

Neutron flux map
Alpha particles

Simulated CR-39 signal 
Hf
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T. Sato, et,al,

J. Nucl. Sci. Technol. 2024
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To evaluate of the spatial 

resolution of the detector

Neutron absorption of 

the pattern is examined.
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16R. Yamada, Institute of Laser Engineering, Osaka.

CD

Copper 

foil

LFEX laser

1kJ 1ps

Target

1mmx1mmx20µmt
Copper foil

CD

2mmx2mmx2mmt

Conducted in 2023

Experimental setup

Thermal neutron generation experiment is conducted 
at LFEX laser facility.

n
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Other ions is generated by high-power laser and detected by CR-39.
Thermal neutron can be discriminated by deep-learning.

17R. Yamada, Institute of Laser Engineering, Osaka.

The signal of proton come 

from TNSA by LFEX laser.

C 

LF   laser

n
Copper 

foil

p

There are two different pit sizes.

α parti le

Proton

Experiment result of CR-39

[1]Y. Kuramitsu, et al., POP 2024

[2]M. Kanasaki, et,al, J.Plasma Fusion Res 2012
[3]T. Taguchi, et,al, Rev. Sci. Instrum. 2024.
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Experimental results by CR-39.
Neutron signal (n+Li→ α+T) is discriminated by pit size-AI technique.

18R. Yamada, Institute of Laser Engineering, Osaka.

Alpha particle pit (>10µm)

Neutron

Thermal neutron signal from CD by d(γ,n)p
6Li + n → α + 3H

Proton pit (<10µm)

Noise

Proton signals from the copper foil 

target by LFEX laser

There are different distributions by the pit size.
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The thermal neutron imaging has been successfully observed.

19R. Yamada, Institute of Laser Engineering, Osaka.

Experiment result

Alpha particles

Simulation result

Alpha particles 

A circle appears on the CR-39 signal in the Hf region.
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Spatial resolution estimation of the thermal neutron detection

20R. Yamada, Institute of Laser Engineering, Osaka.

~2mm

⚫ Ratio from experiment is close to the Hf transmittance ratio.

⚫ From transmittance of Hf, thermal neutron is detected by CR-39 and 6LiF.

⚫ ~2 mm spatial resolution thermal neutron detection is demonstrated. 

No Hf With Hf 

Hf
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Future work
Spin-polarized neutron extraction experiment

22R. Yamada, Institute of Laser Engineering, Osaka.

n

n

Two ultra intense lasers

1. Generating thermal neutron generation.

2. Generating magnetic field.

Imaging

3D scanning of 

magnetic field using 

spin-polarized neutron

Imaging

We will continue to develop the experimental setup.

Laser
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Conclusion
Progress on laser-driven spin polarized neutron beam extraction

23R. Yamada, Institute of Laser Engineering, Osaka.

⚫ Developing the detector 

for spin-polarized neutron

⚫ Thermal neutron imaging 

has been successfully 

observed with CR-39 and 6LiF 

from the attenuation rate of Hf. 

⚫ By using this detector, 

the spin-polarized neutron can be discriminated.
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Application of spin polarized neutron in high density plasma.
Imaging of laser-driven magnetic field.

26R. Yamada, Institute of Laser Engineering, Osaka.

Neutron can penetrate high density matters.

Neutrons are deflected 
by magnetic field gradient (θ ∝ dB/dx × Z),

while not affected by E-field.

Non-uniform 

magnetic field

spin-polarized

z

x

Features of neutron

⚫ High transmittance

⚫ Unaffected by electric fields, but affected by magnetic fields
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27R. Yamada, Institute of Laser Engineering, Osaka.

1. Spin-polarized neutron source has been expected to be unique particle source to 

diagnose magnetic field in the high-density plasmas.

2. The spin-polarized neutron can be extracted by using high power lasers. 

The split with ~1mm is expected for 1kT/10µm magnetic field.

3. As well as the generation, 

a diagnostics technique to discriminate the spin-polarized neutron is required.

4. In this study a highly sensitive thermal-neutron detector 

by a combination of CR-39 and 6LiF is developed.

5. Thermal neutron imaging has been successfully observed at the LFEX laser 

experiment.

6. The data represented enough spatial resolution and sensitivity 

for detecting the spin-polarized neutron.

Summary
Status on laser-driven spin polarized neutron generation
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28

Principle of the measurement.
High efficiency thermal neutron imaging detector is needed.

Laser-driven neutron source 

Requirement on the detection of spin-polarized neutron

1. Robust for noises (non-neutron particles and electro-magnetic pulse)

2. High efficiency for thermal neutron (~ 2.4%)

3. High spatial resolution (~ 1mm) 

4. Large surface area 

R. Yamada, Institute of Laser Engineering, Osaka.
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CR-39 + AI technique is introduced to discriminate neutron signal 
and backgrounds

29R. Yamada, Institute of Laser Engineering, Osaka Univ.

6Li + n → α + 3H + 4.79 MeV

The energy of alpha particles is 2.05 MeV.

M. Kanasaki, et,al, J.Plasma Fusion Res 2012

T. Taguchi, et,al, Rev. Sci. Instrum. 2024.

The pit size of 

1 ~14 µ  is the neutron indu ed α 

Scan data on CR-39

Pits can be discriminated 

using deep learning

Growth curve of pit size by the etching

Alpha particles
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Issues in the conventional thermal neutron detector.

30R. Yamada, Institute of Laser Engineering, Osaka Univ.

Activation measurement by Dysprosium 

using Imaging plate

The picture 

of samples 

Neutron 

imaging

X-ray

imaging

Merit: Easy setup, large area, sufficiently small 

background for non-neutrons (x-ray, electro-

magnetic pulse) 

Demerit: Small efficiency (activation to Imaging 
plate, Imaging plate fading, )

Akifumi Yogo, et,al, Applied Physics Express 2021 Alex Gustschin, et,al, Scientific Reports 2024

Merit: High sensitivity

Demerit: Large noises on X-ray and electro-magnetic 

pulse, large electronics, it is hard to place it at close 

to the laser target. 

 ete tor with ele tri it   ICC  or CC …  
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Scintillator and ICCD methods have a noise issue.

31R. Yamada, Institute of Laser Engineering, Osaka Univ.

High sensitivity scintillator 

detectors or MCP detectors  ete tor with ele tri it   ICC  or CC …  

Backgrounds from non-neutrons 

such as electrons, X-rays, protons, 

and electromagnetic noise 

are also issues to be removed.

Accelerator-driven

neutron source 

with MCP+CCD

Laser-driven 

neutron source

with Scintillator + ICCD

Merit:      High sensitivity

Demerit: Large noises on X-ray and electro-magnetic pulse,

large electronics, it is hard to place it at close to the laser target.

Small sensitivity.

A. S. Tremsin, et,al,

Strain 2016

M.Roth, et,al,

Physical Review Letters 2013

Alex Gustschin, et,al,

Scientific Reports 2024
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Order estimation of laser-driven surface current magnetic field by 
using  nano second laser

Magnetic field generated 
by laser-driven recurrent

𝑩 =
𝝁𝟎𝑰

𝟐𝝅𝒓
r = 2.35 µm (skin depth)

33R. Yamada, Institute of Laser Engineering, Osaka Univ.

I

Front Side

I

GEKKO laser condition: 1 kJ, 1.2 ns, 100 
µm (spot size)

Laser intensity  : 2.0 × 1016 W/cm2, 

Electron energy: 2.04 keV

100 keV

I
About electron Using 
ponderomotive force

⚫Number: 1.217 × 1015

⚫Current: 1.949 × 105 A

B = 16 kT
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Discussion
Why are there two distributions?

36R. Yamada, Institute of Laser Engineering, Osaka Univ.

CD

LFEX laser

n
Copper 

foil

p
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37R. Yamada, Institute of Laser Engineering, Osaka Univ.

CD

Copper 

foil

LFEX laser
①Generating 

X-ray

Principle of the measurement (1/3) 
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38R. Yamada, Institute of Laser Engineering, Osaka Univ.

CD

Copper 

foil

LFEX laser
①Generating 

X-ray

γ-ray

θ

pn
D

The principle to generate the thermal neutron by photonuclear reaction

Direct generation of thermal neutrons

Thermal neutrons are emitted in the opposite direction of X-ray

Point source

No moderator

Principle of the measurement (2/3) 

n

②Generating 

thermal neutron
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39R. Yamada, Institute of Laser Engineering, Osaka Univ.

CD

LFEX laser
①Generating 

X-ray

n

③Measured by 

CR-39+6LiF

6Li is high-sensitive to 

thermal neutrons.

n + 6Li → T + α

CR-39 detects α

N
u
 
b
e
r 
o
f 

n
e
u
tr
o
n
s

 n

Spe tru  of 
neutrons

Nu ber of 
rea tions  Li

Low

ShortLong

High

②Generating 

thermal neutron

Principle of the measurement (3/3) 

The filter has been set up in front of the measurement.

Copper 

foil
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40R. Yamada, Institute of Laser Engineering, Osaka Univ.

ps laser 1
① Generating 

X-ray

n

④Measured by 

CR-39+6LiF

② Generating 

thermal neutron

Principle of the measurement (3/3) 

Copper 

foil

ps laser 2
③ Generating 

magnetic field 

Copper 

foil

Deuterated plastic
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Principle of the measurement 

C 

LF   laser

 Generating 

  ra 

n

  easured b  

C  3 + LiF

 Generating 

ther al neutron
Copper 

foil

Laser-driven neutron source 
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