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Paul McKenna, et. al., Phil. Trans. R. Soc. A (2006) 364, 711–723 

Typical TNSA energies obtained are less  than 100 MeV 

Hybrid (TNSA +RPA) acceleration schemes >100 MeV 

Laser-driven proton beams with energies up to 120-150 

MeV have already been achieved.

(Tim Ziegler, et. al., Nat. PhyS. (2024))

Proton beams with energies up to 200 MeV are expected 

from using lasers with intensities of 1023𝑊/𝑐𝑚2

TNSA: Target Normal Sheath Acceleration 
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In Radiation Pressure Acceleration (RPA), the whole ultra-thin target is ionized and accelerated forward by the sheath field



Laser-plasma accelerated proton beams in TNSA 

F. Nürnberg, et. al., Rev. Sci. Instrum. 80, 033301 (2009)

Proton Energy Spectrum

More low-energy protons

S. Kumar, D.N. Gupta, Lasers and Particle Beams, 1-6 (2020)

RCF stacks
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Exponentially decaying energy distribution of particles



Advantages of proton beam therapy

• Precise targeting of the tumor;

• Higher radiation dose to the tumor;

• Lower risk of radiation damage to healthy tissue;

• Fewer and milder side effects;

• Lower chances of secondary cancer;

Protons

X-rays

Proton beam therapy - FLASH Effect

Breast Prostate Lymphomas Liver

LungHead & Neck GIT Brain & CNS
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Approximately 140 operating proton therapy centers worldwide 



Advantages of proton beam therapy

• Precise targeting of the tumor;

• Higher radiation dose to the tumor;

• Lower risk of radiation damage to healthy tissue;

• Fewer and milder side effects;

• Lower chances of secondary cancer;

Protons

X-rays FLASH Effect

• Effect triggered by delivering an ultra-high dose rate of 

radiation ( > 40 Gy/s)

• Unaltered tumoral response & reduced normal tissue 

toxicity (“spar effect”)

• Rapid dose application allows for the freezing of organ 

motion. 

Proton beam therapy - FLASH Effect

Breast Prostate Lymphomas Liver

LungHead & Neck GIT Brain & CNS
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Approximately 140 operating proton therapy centers worldwide 



Broadband energy spectra

Large Divergence (~20 degrees)

Ultrashort pulse duration of proton bunch (~ps)

High flux (1011 − 1013 protons per shot)

Laser-plasma accelerated proton beams in TNSA 

Characteristics
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Solenoid-based Focusing of Laser-Driven Proton Beams

1
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2

f=focal length, 

B=axial magnetic field

lcoil=length

p,q =momentum and charge of particle

• Stronger focusing (f shorter) when p is small

F. Nürnberg, et. al., Rev. Sci. Instrum. 80, 033301 (2009)

Advantages / Drawbacks of solenoid focusing solution 

Simple geometry 

Variable magnetic field controlled by the coil current

Very effective for smaller energy protons

Needs high currents for high magnetic fields

Energy and divergence of LPA proton beams
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We propose a new approach based on A CONICAL COIL
to capture the divergent proton beam



COMSOL simulation

 Proton source size and distribution 
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Proton source size: radius of 2 micrometers. 

Proton Energy Spectrum Angular Distribution 

1.8 ∙ 104 𝑝𝑟𝑜𝑡𝑜𝑛𝑠
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COMSOL simulation

Geometric description of two-solenoid system

Parameters Nb. of turns Major Radius 
[mm]

Minor radius 
[mm]

Axial pitch 
[mm]

Radial pitch 
[mm] 

Position z [m] Coil current 
[kA]

Conical Coil 70.5 1.5 1 2.5 0.4 0.001 20

Cylindrical Coil 50.5 4 1 2.5 0 0.3 16

Bmax1 = 9 T Bmax2 = 6 T
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Solenoid-based Focusing of Laser-Driven Proton Beams
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COMSOL simulation

Geometric description of optimized two-solenoid system

Longer 2nd solenoid

Parameters Nb. of turns Major Radius 
[mm]

Minor radius 
[mm]

Axial pitch 
[mm]

Radial pitch 
[mm] 

Position z [m] Coil current 
[kA]

Conical Coil 70.5 1.5 1 2.5 0.4 0.001 20

Cylindrical Coil 50.5.   70.5 4 1 2.5 0 0.3 16
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Comparison between the focusing effects induced by the 

two-solenoid focusing systems 

Radius of focus spot Focus spot position 

Initial configuration Optimized configuration (longer 2nd coil) 
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Dose distribution study in a specific target volume

z = 1.08 m 

(focus point for 16-20 MeV protons)

𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 =  78.54 ∙ 10−9𝑚3 

PTV inspired from: F. Kroll, et. Al., Tumour irradiation in mice with a laser-accelerated proton beam, Nat. Phys. 18  (2022)
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4mm

5mm

Cylindrical water 
filled sample



Taylor the energy spectra within a specific energy domain

Less than 300 protons 
of 16-20 MeV

Initial Proton Energy Spectrum Proton Energy Spectrum  for Dose Monitoring Study 

1.18 106 protons of 
16-20 MeV

Increased 

statistics 
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Statistics of particles interacting with the target volume

Emitted particles VS Interacting particles Percentage of protons contributing to sample irradiation 

63% of the generated spectrum contributed to the irradiation of the sample. 
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Dose distribution study in a specific target volume
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Dose distribution in cross sectional profiles
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𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐷𝑜𝑠𝑒 = 2 ∙ 10−9𝐺𝑦 ∙ 𝑚3

𝐷𝑜𝑠𝑒 𝑅𝑎𝑡𝑒 =
𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐷𝑜𝑠𝑒

𝑃𝑢𝑙𝑠𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
~1.2 ∙ 107 Τ𝐺𝑦 𝑠

Dose distribution in longitudinal profile and dose rate

𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐷𝑜𝑠𝑒 𝑖𝑛 𝑇ℎ𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐷𝑜𝑠𝑒

𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒
~2.54 ∙ 10−2 𝐺𝑦

y

z

x

z
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Absorbed Dose (AD) ∝ nr. of protons

In experiments AD/shot ~ 1 Gy, 109 protons 



𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐷𝑜𝑠𝑒 = 2 ∙ 10−9𝐺𝑦 ∙ 𝑚3
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Absorbed Dose (AD) ∝ nr. of protons

In experiments AD/shot ~ 1 Gy, 109 protons 



Tune the coils currents in order to achieve uniform longitudinal dose
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Tune the coils currents in order to achieve uniform longitudinal dose
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Tune the coils currents in order to achieve uniform longitudinal dose
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Tune the coils currents in order to achieve uniform longitudinal dose

27/26

I1 = 18 kA    and    I2 = 14 kA
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Expand for a higher energy range, e.g. to 100 or 200 MeV
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13 Mev protons collimated with system’s parameters: I1 = 22 kA and I2 = 9 kA

100 Mev protons collimated with system’s parameters: I1 = 22 kA and I2 = 9 kA

RPA expected to produce a beam with different spatial focusing properties

• Likely reduction in beam divergence

• Requires new simulations to evaluate changes

• Potential benefits: Lower coil currents

                                   Improved proton capture in the focal spot



Conclusions 

94% capturing efficiency for >  16 𝑀𝑒𝑉 protons

Focus spot size: 9 𝑚𝑚 diameter

Focus spot position: 𝑧 ~ 1 𝑚 from the source

25 𝑚𝐺𝑦 absorbed dose with 1.2 ∙ 107 Τ𝐺𝑦 𝑠 dose rate   
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Laser-driven proton therapy may offer a compact and cost-effective alternative to conventional accelerators, 
enabling ultra-fast dose delivery, thereby giving access to FLASH regime.

Achieving uniform longitudinal dose

Expanding for higher energy range

Results obtained

Future work 
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