Turkish Accelerator & Radiation ## **Laboratory (TARLA)** - Located at the outskirts of Ankara (Turkey) about 15 km south of the city center - Founded as a part of Ankara University, but granted independent status as a National Laboratory as of 2021 - Main goal is to construct an superconducting electron - □ TARLA is intended as a user facility welcoming researchers from all over the world - one half of LINAC has been completed giving 20 MeV(18.6 MeV exactly) - □ The other half is set to be completed in early of 2027, the Gamma experimental station in summer/fall 2027, FEL in 2028 and the first FEL experimental stations to be put in use in 2029 - □ The first beam time applications for nuclear and radiation physics are planed for spring 2026 ## TARLA view ## **TARLA Electron Linear Accelerator** ## **Photonuclear Reactions** # TARLA Electron Linear Accelerator(Zoom-in) ### Conversion (Bremsstrahlung) Targets #### Four/Five targets: - 1 μ m of Au (S_n ~8 MeV) - 1 μ m of W (S_n ~7 MeV) - 6 μ m of Cu (S_n ~10 MeV) - 20 μ m of Al (S_n ~13 MeV) -2 - 40 μm of Al #### Collimator and Neutrons - Overall length of the beam pipe in the wall is 3 m - At start the Al opening is 16.2 mm and at the end it is 27 mm giving an opening angle of 6.75 mrad - At NRF target(2.25 from the collimator) the full spot size would be R=2.25 cm(R=1.5 cm flat and 0.75 cm shadow) ## **Detector setup at TARLA** - HPGe would be 45° relative to the beam and 90° to each other - LaBr3 would 90° relative to the beam and 90° to each other ## Proposed setup would consist of: - 2 Clover HPGe (with BGO) - 2 Single crystal HPGe (with BGO) - 4 Large Volume LaBr₃ #### **Status:** - Clover and Single crystal HPGe are non-site and operational - FAT and SAT tests have been completed successfully - LaBr₃ will be purchased next year ## **About HPGe detectors** - 2 Single HPGe crystal 80x80: - relative efficiency ≥ 100% - The energy resolution <2.5 keV at 1.33 MeV and <1.4 keV at 122 keV. - 2 Clover detectors: 4x50x70 (~3 kg) - mean relative efficiency of each crystal is >20%, whereas the total relative efficiency in "add-back" mode is > 130% - The energy resolution of the four shaped crystals is typically <2.1 keV at 1.33 MeV and <1.05 keV at 122 keV. In add-back mode, the energy resolution is still excellent: 2.3 keV at 1.33 MeV. - Used in EUROGAM, EUROBALL(since 1992), CLARA, AFRODITE, INGABALL. ## Beamtime application - Beamtime application website is being created - Operational next week https://en.tarla-fel.org/apply-for-bematime and https://en.tarla-fel.org/tarla-user-portal-guide/ - we want to open it early and keep it open longer(6 months) ~ spring 2026 ## Beamtime application(table tot laser example) ## **TARLA Current physics experimental stations** ## Fast transfer 20 MeV experimental station - ◆This is an "offline" setup up to 20 MeV - Sample transfer time down to 5 s, slower option available - ◆ Current/dose rate is somewhat limited(~2 uA/~100 kGy/h) but sufficient - Suitable for all activation and radiation physics experiments. - ◆Sample size is limited ~1.5 g or ~1.5 mL (D=10 mm, L=20 mm) Fast sample transfer system (Rabbit) ## Fast sample transfer system(07/10/2028) 50 % complete and 2-2.5 s transfer time ### Experiments at 20 MeV - Sample placement system for offline photo-nuclear reactions -2 -3 - Carbon cup used as bremsstrahlung source - Plastics for pipe and sample holder/transfer - Activation experiments - PAA and other applied studies - Radiation physics - off-line setup ## **Photonuclear Reactions** Photon always fully absorbed → Excitation of nuclear resonance Particle separation threshold Nuclear Resonance Fluorescence ("Photon scattering") #### Research: - Nuclear Resonance Florescence (γ,γ') - Photo-neutron reactions (γ,n) - Other separationreactions (Astrophysics)(γ,p); (γ,α) - Photofission #### **Applications:** - Gamma Imaging - Material science - Medical Radio isotopes - Detector research ## Outlook: TARLA future – 5 year plan (up to 2030) - Reaching the maximum energy of the accelerator (38.3 MeV) in 2026 - ►Once the Gamma experimental station is operational in 2027 we start with the NRF - ► 2028, Experiments above the neutron threshold (nuclear structure of the giant dipole resonances (GDR) from studies of gamma and neutron decays, photodisintegration cross-sections, etc.) - Resolution of the large literature discrepancies of the partial (γ, xn) cross-sections with improved measurements - More detectors, especially neutron detectors - \geq 2029, Photofission (γ ,f), even more detectors, charged particle detectors - ➤On the FEL side in 2028 we expect to have first light and in 2029 to commissioning and start using the experimental stations ## **Summary** - TARLA linac is shaping up nicely - First section giving 20 MeV is ready - Fast transfer station is assembled and the next month activation and radiation experiments should start (discussion under way to make this station permanent) - Full 40 MeV LINAC(second RF exit) is planed to be completed by the mid of 2027 - the first experiments with photon beam (bremsstrahlung) in summer/fall 2027 - the first experiments with photon beam (FEL) in 2029 - the first NRF experiments with a New Gamma spectroscopy setup - 2028-2029, Beyond NRF we have plans for GDR and Photofission studies in next 5 years ## Thank you for your attention! #### **TARLA TEAM:** H. Đapo¹, A. B. Bereketoğlu¹, A. Şahin¹, A. Öztürk¹, A. Hacisalihoğlu², B. Yildirimdemir¹, B. Gezer¹, C. Taner¹, C. Doğan¹, E. N. Cansiz¹, F. K. Işik¹, H. Vural¹, H. İ. Nalçak¹, H. Yildiz¹, İ. Tan¹, İ. E. Çolak¹, K. K. Şahbaz¹, M. Tamkaş¹,³, M. B. Gür¹, M. Özdemir¹, M. Z. Şentürk¹, M. Yüksel¹, M. Mutlu¹, N. Ergin¹, O. F. Demirtaş¹, Ö. Karsli¹, R. Tunç¹, R. Kuyrukcu¹, S. Aydinli¹, S. Çakmakoğlu¹, S.Sert¹, T. Olgun¹, Y. Küçük¹,⁴, Y. E. Yanar¹, Z. R. Öztürk¹ ¹Turkish Accelerator and Radiation Laboratory, Ankara, TÜRKİYE ²Recep Tayyip Erdoğan University, Physics Department, Rize, TÜRKİYE ³Marmara University, Science Faculty, Physics Department, İstanbul, TÜRKİYE ⁴Akdeniz University, Department of Physics, Antalya, TÜRKİYE And if you wish to propose activation experiments at TARLA or learn details about the detector setup feel free to contact me at hdapo@tarla-fel.org ### **TARLA** ## **Nuclear Physics experimental station** - From monochromatic electron spectrum one produces a continuous "white" photon spectrum - High photon intensities possible ## **TARLA Beams** #### Polarized γ -Source (CW/Pulsed) $\begin{array}{lll} \mbox{Photon Energy} & \mbox{0-30 MeV} \\ \mbox{Photon flux} & > 10^{10} \ cm^{-2} s^{-1} \mbox{MeV}^{-1} \\ \mbox{Detectors} & \mbox{HPGe, LaBr, BaF} \end{array}$ #### Injector (DC/CW/Pulsed) Energy 100-250 keV Max. Bunch Chrg 125 pC Max. Current 2 mA Bunch length 500 ps /DC 1kHz-26MHz/DC Bunch repetition Pulse repetition 100 Hz /CW Pulse duration 40 μs/CW <10 mm.mrad Emittance #### Linac (CW/Pulsed) Energy 5-40 MeV Max. Bunch Charge 125 pc Max. Current 1.5 mA 0.5-6 psBunch length 1 kHz-26 MHz Bunch repetition Pulse repetition 100 Hz/CW Pulse duration 40 μs /CW Emittance <12 mm.mrad ## Free Electron Laser (CW/Pulsed) Photon energy 4-300 meV Wavelength $5-350~\mu m$ Pulse Length 0.5-10 psPolarization Linear 13 MHz - 1kHz Repetition Rate Pulse repetition 100 Hz/CW Pulse duration $100 \mu s/CW$ Max Pulse energy $2 \mu J$ 2 MW Max Peak Power 100 W Max Average Power ## First acceleration through Linac1 First beam on the beam profile monitor after Linac1 #### 19 April 2024 Beam acceleration through superconducting cavities. First time at TARLA and in Türkiye. **Energy measurement:** vary steering magnet field, check beam deflection and calculate energy. ## How it works ### Photo-nuclear reactions on short lived nuclei | Target | Reaction | Product | Decay | |------------------------|---|------------------------|------------------------| | ²⁴ Mg | ²⁴ Mg+γ-> ²³ Mg+n | ²³ Mg | ²³ Na | | ³² S | ³² S+γ-> ³¹ S+n | ³¹ S | ³¹ P | | ²⁸ Si | ²⁸ Si+γ-> ²⁷ Si+n | ²⁷ Si | ²⁷ Al | | Nucleus | Half-life(s) | Gamma Enerji | |------------------------|--------------|---| | | | (keV) | | ²³ Mg | 11.3046 | 440.5
2390.6
1950.6 | | ³¹ S | 2.5535 | 1266.1
3134.1
3505.9 | | ²⁷ Si | 4.15 | 2212.01
2982.00
1014.52
1720.3 |