Oct 6 – 10, 2025
TU Darmstadt
Europe/Berlin timezone

Deviations from the Porter-Thomas distribution due to non-statistical $\gamma$ decay

Oct 7, 2025, 2:30 PM
30m
Oral presentation Session III

Speaker

Johann Isaak (Technische Universität Darmstadt, Institut für Kernphysik)

Description

Random Matrix Theory provides a comprehensive framework for the description of complex, chaotic quantum systems [1,2]. It is exploited across various domains of physics as for instance in the statistical treatment of nuclear reactions within the Hauser-Feshbach formalism [3]. One important aspect in the practical application of Hauser-Feshbach codes is the fluctuation property of partial transition widths. Experimentally, the applicability of so-called Porter-Thomas (PT) fluctuations [4] has been extensively studied in thermal neutron capture experiments [5]. Former analyses of the nuclear data ensemble (NDE) of neutron resonances [5] validate the PT distribution. Recent studies and thorough reanalyses of the NDE revealed significant deviations from PT predictions [6] partially explained by non-statistical $\gamma$ decays. Neutron resonances provided a vast amount of precision data on fluctuation properties of nuclear resonances. However, no experimental data exist, to date, for width fluctuations \textit{below} neutron separation thresholds. This region is particularly interesting because it contains the onset of the quasicontinuum region. There, the nuclear spectra transition from a few individual states at low excitation energies to an ensemble of states at high excitation energies. The latter are assumed to be well described by the ansatz of the Hauser-Feshbach statistical model.
In this contribution, we introduce a new method for the study of fluctuations of partial transition widths based on nuclear resonance fluorescence experiments with quasimonochromatic linearly-polarized photon beams below particle separation thresholds [7]. Assuming (\chi^2)-distributed partial transition widths, average branching ratios of internal $\gamma$ decay transitions are related to the degree of freedom $\nu$ of the (\chi^2) distribution. Recent studies with $^{150}$Nd result in a degree of freedom of (\nu = \num{1.93(12)}) in clear disagreement with the PT distribution [8,9]. The recent findings will be discussed in the context of non-statistical effects in the (\gamma)-decay behavior that are potentially connected to the survival of good $K$ quantum numbers in the covered excitation-energy region.

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 279384907 - SFB~1245, Project-ID 460150577 - ZI 510/10-1, and Project-ID 499256822 - GRK~2891 “Nuclear Photonics”, by the State of Hesse under the grant “Nuclear Photonics” within the LOEWE program (LOEWE/2/11/519/03/04.001(0008)/62), by the BMBF under grant number 05P21RDEN9. Furthermore, this work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under grants DE-SC0023010, DE-FG02-97ER41041 (UNC), and DE-FG02-97ER41033 (Duke, TUNL), and by the UK-STFC (Grant No. ST/P005101/1).

[1] H. A. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys. 81, 539 (2009).
[2] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998).
[3] W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
[4] C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).
[5] R. U. Haq, A. Pandey, and O. Bohigas, Phys. Rev. Lett. 48, 1086 (1982).
[6] P. E. Koehler, Phys. Rev. C 84, 034312 (2011).
[7] A. Zilges, D. Balabanski, J. Isaak, and N. Pietralla, Prog. Part. Nucl. Phys. 122, 103903 (2022).
[8] O. Papst, J. Isaak, V. Werner, D. Savran, N. Pietralla, G. Battaglia, T. Beck, M. Beuschlein, S. W. Finch, U. Friman-Gayer, K. E. Ide, R. V. F. Janssens, M. D. Jones, J. Kleemann, B. Löher, M. Scheck, M. Spieker, W. Tornow, R. Zidarova, and A. Zilges, accepted for publication in Phys. Rev. Lett. (2025).
[9] O. Papst, J. Isaak, V. Werner, D. Savran, N. Pietralla, G. Battaglia, T. Beck, M. Beuschlein, S. W. Finch, U. Friman-Gayer, K. E. Ide, R. V. F. Janssens, M. D. Jones, J. Kleemann, B. Löher, M. Scheck, M. Spieker, W. Tornow, R. Zidarova, and A. Zilges, (2025), arXiv:2501.19185 [nucl-ex].

Primary author

Johann Isaak (Technische Universität Darmstadt, Institut für Kernphysik)

Co-authors

Andreas Zilges (Institute for Nuclear Physics, University of Cologne) Bastian Löher (GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany) Deniz Savran (GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany) Dr Giorgio Battaglia (University of Strathclyde, Glasgow, United Kingdom) Jörn Kleemann (Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany) Katharina Ide (Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany) Maike Beuschlein (Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany) Prof. Marcus Scheck (School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley, United Kingdom) Prof. Mark Spieker (Florida State University, Department of Physics, Tallahassee, FL 32306, USA) Norbert Pietralla (Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany) Oliver Papst (Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany) R. Zidarova (Institute for Nuclear Physics, Dept. of Physics, Technische Universität Darmstadt, D-64289 Darmstadt, Germany) Robert V. F. Janssens (Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308, USA) Sean Finch (Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308, USA and Department of Physics, Duke University, Durham, North Carolina 27708-0308, USA) T. Beck (Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium) Volker Werner (Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany) Werner Tornow (Duke University and Triangle Universities Nuclear Laboratory)

Presentation materials

There are no materials yet.